On Counting Generalized Colorings

نویسندگان

  • Tomer Kotek
  • Johann A. Makowsky
  • Boris Zilber
چکیده

The notion of graph polynomials definable in Monadic Second Order Logic, MSOL, was introduced in [Mak04]. It was shown that the Tutte polynomial and its generalization, as well as the matching polynomial, the cover polynomial and the various interlace polynomials fall into this category. In this paper we present a framework of graph polynomials based on counting functions of generalized colorings. We show that this class encompasses the examples of graph polynomials from the literature. Furthermore, we extend the definition of graph polynomials definable in MSOL to allow definability in full second order, SOL. Finally, we show that the SOL-definable graph polynomials extended with a combinatorial counting function are exactly the counting functions of generalized colorings definable in SOL. ? Partially supported by the Israel Science Foundation for the project ”Model Theoretic Interpretations of Counting Functions” (2007-2010) and the Grant for Promotion of Research by the Technion–Israel Institute of Technology. ?? Partially supported by MODNET: Marie Curie Research Training Network MRTNCT-2004-512234

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Counting Colored Random Triangulations

We revisit the problem of enumeration of vertex-tricolored planar random triangulations solved in [Nucl. Phys. B 516 [FS] (1998) 543-587] in the light of recent combinatorial developments relating classical planar graph counting problems to the enumeration of decorated trees. We give a direct combinatorial derivation of the associated counting function, involving tricolored trees. This is gener...

متن کامل

On Approximately Counting Colorings of Small Degree Graphs

We consider approximate counting of colorings of an n-vertex graph using rapidly mixing Markov chains. It has been shown by Jerrum and by Salas and Sokal that a simple random walk on graph colorings would mix rapidly, provided the number of colors k exceeded the maximum degree ∆ of the graph by a factor of at least 2. We prove that this is not a necessary condition for rapid mixing by consideri...

متن کامل

Combinatorial aspects of an exact sequence that is related to a graph

The five problems of counting component colorings, vertex colorings, arc colorings, cocycles, and switching equivalence classes of a graph with respect to a finite field up to isomorphism are related by an exact sequence that stems from a coboundary operator. This cohomology is presented, and counting formulas are given for each of the five problems.

متن کامل

Improved FPTAS for Multi-spin Systems

We design deterministic fully polynomial-time approximation scheme (FPTAS) for computing the partition function for a class of multi-spin systems, extending the known approximable regime by an exponential scale. As a consequence, we have an FPTAS for the Potts models with inverse temperature β up to a critical threshold |β| = O( 1 ∆ ) where ∆ is the maximum degree, confirming a conjecture in [1...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008